An Ontology Assisted Framework Co-location Pattern Mining
نویسندگان
چکیده
The importance of spatial data mining is growing with the increasing incidence and importance of large geo-spatial datasets such as maps, location based mobile app data, medical data, crime data, education system data, traffic data and many more. Co-location pattern mining is one of the important task in spatial data mining. The co-location patterns represent subsets of Boolean spatial features whose instances are often located in close geographic proximity. It is generally seen as a descriptive task where values of attributes are taken as deciding factors and the meaning of each item or instance is not taken into consideration. In this work we propose an Ontology assisted co-location mining framework for co-location pattern discovery. Ontologies of spatial attributes and spatial co-location pattern discovery process interoperate to deliver a concise framework for co-location pattern mining. The framework is tested on the Indian schools dataset provided by District Information System for Education (DISE).
منابع مشابه
Query Architecture Expansion in Web Using Fuzzy Multi Domain Ontology
Due to the increasing web, there are many challenges to establish a general framework for data mining and retrieving structured data from the Web. Creating an ontology is a step towards solving this problem. The ontology raises the main entity and the concept of any data in data mining. In this paper, we tried to propose a method for applying the "meaning" of the search system, But the problem ...
متن کاملFp-tree Based Spatial Co-location Pattern Mining
A co-location pattern is a set of spatial features frequently located together in space. A frequent pattern is a set of items that frequently appears in a transaction database. Since its introduction, the paradigm of frequent pattern mining has undergone a shift from candidate generation-and-test based approaches to projection based approaches. Co-location patterns resemble frequent patterns in...
متن کاملClustering Assisted Co-location Pattern Mining for Spatial Data
The importance of spatial data mining is growing with the increasing incidence and importance of large spatial datasets repositories of remote-sensing images, location based mobile app data, satellite imagery, medical data and crime data with location information, three dimensional maps, traffic data and many more. However, as classical data mining techniques are often inadequate for spatial da...
متن کاملA new stochastic 3D seismic inversion using direct sequential simulation and co-simulation in a genetic algorithm framework
Stochastic seismic inversion is a family of inversion algorithms in which the inverse solution was carried out using geostatistical simulation. In this work, a new 3D stochastic seismic inversion was developed in the MATLAB programming software. The proposed inversion algorithm is an iterative procedure that uses the principle of cross-over genetic algorithms as the global optimization techniqu...
متن کاملMining Co-location Patterns from Spatial Data Using Rulebased Approach
Co-location pattern is a group of spatial features/events that are frequently co-located in the same region. The co-location pattern discovery process finds the subsets of features frequently located together. Co-location rules are identified by spatial statistics or data mining techniques. A co-location algorithm has been used to discover the co-location patterns which possess an ant monotone ...
متن کامل